Publications

Grote, M. J., Nataf, F., Tang, J. H. and Tournier, P.-H. (2020) “Parallel Controllability Methods for the Helmholtz Equation”, Computer Methods in Applied Mechanics and Engineering. Elsevier, 362, p. 112846. doi: 10.1016/j.cma.2020.112846.   edoc | Open Access
Baffet, D. and Grote, M. J. (2019) “On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions ”, Journal of computational physics. Elsevier, 387, pp. 589–596. doi: 10.1016/j.jcp.2019.03.004.   edoc
Grote, M. J., Nataf, F., Tang, J. H. and Tournier, P.-H. (2019) “Parallel Controllability Methods For the Helmholtz Equation”. Universität Basel (Preprints Fachbereich Mathematik, 2019).   edoc | Open Access
Graff, M., Grote, M. J., Nataf, F. and Assous, F. (2019) “How to solve inverse scattering problems without knowing the source term: a three-step strategy”. Universität Basel (Preprints Fachbereich Mathematik, 2019).   edoc | Open Access
Baffet, D. H., Grote, M. J., Imperiale, S. and Kachanovska, M. (2019) “Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation ”, Journal of Scientific Computing. Springer, 81(3), pp. 2237–2270. doi: 10.1007/s10915-019-01089-9.   edoc
Grote, M. J. and Tang, J. H. (2019) “On Controllability Methods for the Helmholtz Equation ”, Journal of computational and applied mathematics. Elsevier, 358, pp. 306–326. doi: 10.1016/j.cam.2019.03.016.   edoc
Grote, M. J. and Nahum, U. (2019) “Adaptive Eigenspace for Multi-Parameter Inverse Scattering Problems ”, Computers & mathematics with applications. Elsevier, 77(12), pp. 3264–3280. doi: 10.1016/j.camwa.2019.02.005.   edoc
Graff, M., Grote, M. J., Nataf, F. and Assous, F. (2019) “How To Solve Inverse Scattering Problems Without Knowing the Source Term: A Three-step Strategy ”, Inverse Problems. Institute of Physics Publishing, 35(10), p. 104001. doi: 10.1088/1361-6420/ab2d5f.   edoc | Open Access
Grote, M. J., Nataf, F., Tang, J. H. and Tournier, P.-H. (2019) “Scalable Parallel Methods for the Helmholtz Equation via Exact Controllability”, in 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2019). Wien: TU Wien. doi: 10.34726/waves2019.   edoc
Grote, M. J. and Michel, S. (2019) “Efficient Uncertainty Quantification for Wave Propagation in Complex Geometry”, in 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2019). Wien: TU Wien, pp. 510–511. doi: 10.34726/waves2019.   edoc
Baffet, D., Grote, M. J. and Tang, J. H. (2019) “Adaptive Eigenspace Regularization for Inverse Scattering Problems”, in 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2019). Wien: TU Wien, p. 312. doi: 10.34726/waves2019.   edoc
Baffet, D. and Grote, M. J. (2019) “One-Way Operators for Time Dependent Wave Splitting and Echo Removal”, in Proceedings of 14th Internat. Conf. on Math. and Numerical Aspects of Wave Propagation (WAVES 2019). Wien: TU Wien, pp. 408–409. doi: 10.34726/waves2019.   edoc
Graff, M., Grote, M. J., Nataf, F. and Assous, F. (2019) “How to solve inverse scattering problems without knowing the source term”, in 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2019). Wien: TU Wien, pp. 410–411. doi: 10.34726/waves2019.   edoc
Baffet, D. and Grote, M. J. (2018) “On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions”. Universität Basel (Preprints Fachbereich Mathematik, 2018).   edoc | Open Access
Baffet, D., Grote, M. J., Imperiale, S. and Kachanovska, M. (2018) “Energy decay and stability of a perfectly matched layer for the wave equation”. Universität Basel (Preprints Fachbereich Mathematik, 2018).   edoc | Open Access
Abdulle, A., Grote, M. J. and Jecker, O. (2018) “Finite element heterogeneous multiscale method for elastic waves in heterogeneous media”, Computer Methods in Applied Mechanics and Engineering. Elsevier, (335), pp. 1–23. doi: 10.1016/j.cma.2018.01.038.   edoc
Grote, M. J., Mehlin, M. and Sauter, S. A. (2018) “Convergence Analysis of Energy Conserving”, SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics, 56(2), pp. 994–1021. doi: 10.1137/17M1121925.   edoc | Open Access
Grote, M. and Tang, J. H. (2018) “On controllability methods for the Helmholtz equation”. Universität Basel (Preprints Fachbereich Mathematik, 2018).   edoc | Open Access
Abdulle, A., Grote, M. and Jecker, O. (2018) “Finite element heterogeneous multiscale method for Elastic Waves in Heterogeneous Media”. Universität Basel (Preprints Fachbereich Mathematik, 2018).   edoc | Open Access
Rietmann, M., Grote, M. J., Peter, D. and Schenk, O. (2017) “Newmark local time stepping on high-performance computing architectures”, Journal of Computational Physics. Elsevier, 334, pp. 308–326. doi: 10.1016/j.jcp.2016.11.012.   edoc
Grote, M., Mehlin, M. and Sauter, S. A. (2017) “Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation”. Universität Basel (Preprints Fachbereich Mathematik, 2017).   edoc | Open Access
Grote, M. and Nahum, U. (2017) “Adaptive eigenspace regularization for inverse scattering problems”. Universität Basel (Preprints Fachbereich Mathematik, 2017).   edoc | Open Access
Grote, M. J., Kray, M., Nataf, F. and Assous, F. (2017) “Time-dependent wave splitting and source separation”, Journal of Computational Physics. Elsevier, 330, pp. 981–996. doi: 10.1016/j.jcp.2016.10.021.   edoc
Grote, M. J., Kray, M. and Nahum, U. (2017) “Adaptive eigenspace method for inverse scattering problems in the frequency domain”, Inverse Problems. Institute of Physics Publishing, 33(2), p. 25006. doi: 10.1088/1361-6420/aa5250.   edoc
Grote, M., Kray, M. and Nahum, U. (2016) “Adaptive eigenspace method for inverse scattering problems in the frequency domain”. Universität Basel (Preprints Fachbereich Mathematik, 2016).   edoc | Open Access
Assous, F., Nataf, F., Grote, M. and Kray, M. (2015) “Time-dependent wave splitting and source separation”. Universität Basel (Preprints Fachbereich Mathematik, 2015).   edoc | Open Access
Diaz, J. and Grote, M. (2015) “Multi-Level Explicit LocalTime-Stepping Methodsfor Second-OrderWave Equations”. Universität Basel (Preprints Fachbereich Mathematik, 2015).   edoc | Open Access
Grote, M. J., Kray, M., Nataf, F. and Assous, F. (2015) “Wave splitting for time-dependent scattered field separation”, Comptes rendus mathematique. Académie de Sciences, 353(6), pp. 523–527. doi: 10.1016/j.crma.2015.03.008.   edoc
Grote, M. and Nahum, U. (2015) “Adaptive Eigenspace Inversion for the Helmholtz Equation”, in 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Karlsruhe: KIT.   edoc
Gaudio, L., Grote, M. and Mehlin, M. (2015) “Convergence Analysis of Leap-Frog Based Local Time-Stepping for the Wave Equation”, in 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Karlsruhe: KIT.   edoc
Rietmann, M., Grote, M., Daniel , P., Schenk, O. and Ucar, B. (2015) “Load-Balanced Local Time Stepping for Large-Scale Wave Propagation”, in 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS 2015) . Piscataway, NJ: IEEE, pp. 925–935. doi: 10.1109/IPDPS.2015.10.   edoc
Almquist, M., Grote, M. and Mehlin, M. (2015) “Multi-Level Runge-Kutta based Explicit Local Time-Stepping for Wave Propagation”, in 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Karlsruhe: KIT, pp. 268–269.   edoc
Grote, M., Kray, M., Nataf, F. and Assous, F. (2015) “Wave-Splitting for Time-Dependent Scattered Field Separation”, in 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Karlsruhe: KIT, pp. 292–293.   edoc
Grote, M. and Mehlin, M. (2015) “Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics”, in 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Karlsruhe: KIT, pp. 266–267.   edoc
Grote, M. J., Mehlin, M. and Mitkova, T. (2015) “Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation”, SIAM journal on scientific computing. SIAM, Vol. 37, H. 2 , A747–A775.   edoc
Diaz, J. and Grote, M. J. (2015) “Multilevel Explicit Local Time-stepping For Second-order Wave Equations”, Computer methods in applied mechanics and engineering. Elsevier, Vol. 291, pp. 240–265.   edoc
Grote, M., Mehlin, M. and Mitkova, T. (2014) “Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation”. Universität Basel (Preprints Fachbereich Mathematik, 2014).   edoc
Diaz, J. and Grote, M. (2014) “Multi-Level Explicit Local Time-Stepping Methods for Second-Order Wave Equations”. Universität Basel (Preprints Fachbereich Mathematik, 2014).   edoc | Open Access
Grote, M., Kray, M., Nataf, F. and Assous, F. (2014) “Wave splitting for time-dependent scattered field separation -- Décomposition d’ondes pour la séparation de champs diffractésdans le domaine temporel”. Universität Basel (Preprints Fachbereich Mathematik, 2014).   edoc
Abdulle, A., Grote, M. J. and Stohrer, C. (2014) “Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects”, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal. Society for Industrial and Applied Mathematics, 12(3), pp. 1230–1257. doi: 10.1137/13094195X.   edoc | Open Access
Grote, M. J., Huber, J., Kourounis, D. and Schenk, O. (2014) “Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization”, SIAM Journal on Scientific Computing. Society for Industrial and Applied Mathematics, 36(3), pp. A1251-A1276.   edoc
Grote, M., Huber, J., Kourounis, D. and Schenk, O. (2013) “Inexact Interior-Point Method for Pde-Constrained Nonlinear Optimization”. Universität Basel (Preprints Fachbereich Mathematik, 2013).   edoc | Open Access
Abdulle, A., Grote, M. and Stohrer, C. (2013) “Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects”. Universität Basel (Preprints Fachbereich Mathematik, 2013).   edoc | Open Access
Grote, M. J., Mehlin, M. and Mitkova, T. (2013) “Runge-Kutta type explicit local time-stepping methods”, in Proceedings of 11th international conference on mathematical and numerical aspects of wave propagation (WAVES 2013). [s.l.]: INRIA, pp. 189–190.   edoc
Abdulle, A., Grote, M. J. and Stohrer, C. (2013) “Finite element heterogeneous multiscale method for the wave equation: long-time effects”, in Proceedings of 11th international conference on mathematical and numerical aspects of wave propagation (WAVES 2013). [s.l.]: INRIA, pp. 233–234. doi: 10.4171/OWR/2013/03.   edoc
Gaudio, L., Grote, M. J. and Schenk, O. (2013) “Interior point method for time-dependent inverse problems”, in Proceedings of 11th international conference on mathematical and numerical aspects of wave propagation (WAVES 2013). [s.l.]: INRIA, pp. 121–122.   edoc
Assous, F., Grote, M. J., Kray, M. and Nataf, F. (2013) “Time-reversed absorbing conditions (TRAC): discrimination between one and two nearby inclusions in the partial aperture case”, in Proceedings of 11th international conference on mathematical and numerical aspects of wave propagation (WAVES 2013). [s.l.]: INRIA, pp. 137–138.   edoc
Abdulle, A., Grote, M. J. and Stohrer, C. M. (2013) “FE Heterogeneous Multiscale Method for Long Time Wave Propagation”, Comptes rendus mathematique. Académie de Sciences, Vol. 351, no. 11-12, pp. 495–499. doi: 10.1016/j.crma.2013.06.002.   edoc
Grote, M. J. and Mitkova, T. (2013) “Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation”, in Direct and Inverse Problems in Wave Propagation and Applications. Berlin: De Gruyter, pp. 187–218.   edoc
Grote, M. and Mitkova, T. (2012) “Explicit local time-stepping methods for time-dependent wave propagation”. Universität Basel (Preprints Fachbereich Mathematik, 2012).   edoc | Open Access
Grote, M. J., Mehlin, M. and Mitkova, T. (2012) “DG Methods and Local Time-Stepping for Wave Propagation”, in Theory and Applications of DG Methods. European Math Society (Oberwolfach Reports, 9).   
Grote, M. J., Mehlin, M. and Mitkova, T. (2012) “High-Order Local Time-Stepping with Explicit Runge-Kutta Methods”, in Proceedings of SCEE’12. ETHZ.   
Abdulle, A. and Grote, M. J. (2011) “Finite Element Heterogeneous Multiscale Method for the Wave Equation”, Multiscale Modeling and Simulation. Society for Industrial and Applied Mathematics, 9(2), pp. 766–792. doi: 10.1137/100800488.   edoc
Grote, M. J. and Sim, I. (2011) “Local nonreflecting boundary condition for time-dependent multiple scattering”, Journal of Computational Physics. Elsevier, 230(8), pp. 3135–3154. doi: 10.1016/j.jcp.2011.01.017.   edoc
Abdulle Assyr, Grote, M. J. and Stohrer, C. (2011) “Finite element heterogeneous multiscale method for transient wave propagation”, in Proceedings of WAVES 2010, the 10th International conference on the mathematical and numerical aspects of waves. Vancouver: The Pacific Institute for the Mathematical Sciences, pp. 45–48.   edoc
Grote, M. J., Huber, J. and Schenk, O. (2011) “Interior point methods for the inverse medium problem on massively parallel architectures”, in Proceedings of the international conference on computational science (ICCS 2011). Amsterdam: Elsevier, pp. 1466–1474. doi: 10.1016/j.procs.2011.04.159.   edoc
Grote, M. J., Palumberi, V., Wagner, B., Barbero, A. and Martin, I. (2011) “Dynamic formation of oriented patches in chondrocyte cell cultures”, Journal of mathematical biology. Springer, Vol. 63, H. 4, pp. 757–777. doi: 10.1007/s00285-010-0390-4.   edoc
Abdulle, A. and Grote, M. (2010) “Finite Element Heterogeneous Multiscale Method for the Wave Equation”. Universität Basel (Preprints Fachbereich Mathematik, 2010).   edoc | Open Access
Grote, M. and Sim, I. (2010) “Local Nonreflecting Boundary Conditionfor Time-Dependent Multiple Scattering”. Universität Basel (Preprints Fachbereich Mathematik, 2010).   edoc | Open Access
Beilina, L. and Grote, M. (2010) “Adaptive Hybrid Finite Element/Difference Method for Maxwell’s Equations”. Universität Basel (Preprints Fachbereich Mathematik, 2010).   edoc | Open Access
Barbero, A., Grote, M., Martin, I., Palumberi, V. and Wagner, B. (2010) “Dynamic Formation of Oriented Patches in Chondrocyte Cell Cultures”. Universität Basel (Preprints Fachbereich Mathematik, 2010).   edoc | Open Access
Grote, M. J. and Mitkova, T. (2010) “Explicit local time-stepping for Maxwell’s equations”, Journal of computational and applied mathematics. Elsevier, Vol. 234, H. 12, pp. 3283–3302. doi: 10.1016/j.cam.2010.04.028.   edoc
Grote, M. J. and Mitkova, T. (2010) “Discontinuous galerkin methods and local time stepping for wave propagation”, in AIP Conference Proceedings Volume 1281 for ICNAAM 2010. American Institute of Physics (AIP), pp. 320–324.   edoc
Grote, M. J. and Schötzau, D. (2009) “Optimal error estimates for the fully discrete interior penalty DG method for the wave equation”, Journal of scientific computing. Kluwer, Vol. 40, pp. 257–272. doi: 1007/s10915-008-9247-z.   edoc
Grote, M. J. and Sim, I. (2009) “On local nonreflecting boundary conditions for time-dependent wave propagation”, Chinese annals of mathematics. Ser. B. Springer, Vol. 30, H. 5, pp. 589–606. doi: 10.1007/s11401-009-0203-5.   edoc
Bollhoefer, M., Grote, M. J. and Schenk, O. (2009) “Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media”, SIAM journal on scientific computing. SIAM, Vol. 31, pp. 3781–3805. doi: 10.1137/080725702.   edoc
Diaz, julien and Grote, M. J. (2009) “Energy conserving explicit local time-stepping for second-order wave equations”, SIAM journal on scientific computing. SIAM, Vol. 31, pp. 1985–2014.   edoc
Grote, M. and Mitkova, T. (2009) “Explicit local time-stepping for transient electromagnetic waves”, in Proceedings of WAVES 2009, the 9th International conference on mathematical and numerical aspects of waves propagation. Rocquencourt: INRIA, pp. 70–71.   edoc